AcetaZOLAMIDE for Injection, USP

For Intravenous Use

NDC 39822-0190-1

<table>
<thead>
<tr>
<th>Description</th>
<th>Strength/Size</th>
<th>Unit Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcetaZOLAMIDE for Injection, USP</td>
<td>500 mg/vial*</td>
<td>1 vial</td>
</tr>
</tbody>
</table>

*Each vial contains: acetazolamide sodium equivalent to 500 mg acetazolamide and pH adjusted to approximately 9.6 with sodium hydroxide and, if necessary, hydrochloric acid.

Please contact customer service at 866-390-4411 or visit our website at www.x-gen.us

Store at controlled room temperature. See reverse for full prescribing information.
Acetazolamide is available for intravenous use, and is supplied as a sterile powder requiring reconstitution. Each vial contains acetazolamide equivalent to 500 mg of acetazolamide. Solutions to be injected adjust to pH 5.0 using hydrochloric acid and, if necessary, hydrochloric acid is prior to lyophilization.

CLINICAL PHARMACOLOGY

Acetazolamide is a potent carbonic anhydrase inhibitor, effective in the central fluid acidosis (e.g., some types of glaucoma, in the treatment of certain convulsions disorders (e.g., petit mal, unlocalized seizures); chronic simple (open-angle) glaucoma, secondary glaucoma, and preoperatively in acute angle-closure glaucoma where restriction or central obstruction of the aqueous humor flow results in elevated intraocular pressure.

INDICATIONS AND USAGE

Acetazolamide is an enzyme inhibitor that acts specifically on carbonic anhydrase, the enzyme possessing a chemical structure and pharmacological activity distinctly different from the bacteriostatic sulfonamides.

Acetazolamide is an enzyme inhibitor that specifically on carbonic anhydrase, the enzyme that catalyzes the reverse reaction involving the hydration of carbon dioxide and the dehydration of carbonic acid. In the eye, this inhibitory action of acetazolamide decreases the aqueous humor pressure and results in a drop in intraocular pressure, a reaction that can be sustained in glaucoma of diverse etiology (e.g., open-angle, angle-closure, and secondary glaucoma; glaucoma associated with uveitis; pseudoexfoliation glaucoma). This reduction in intraocular pressure is thought to result from a decrease in the formation of aqueous humor, which is the fluid that nourishes the structures of the eye.

The diurnal effect of acetazolamide is due to its action in the anterior chamber of the eye, where it inhibits the production of aqueous humor and decreases intraocular pressure.

The result is renal loss of HCO3 ion, which carries out sodium, water, and potassium.

Acetazolamide is the diuretic effect of acetazolamide is due to its action in the kidney on the reversible reaction in its ability to inhibit carbonic anhydrase, which seems to indicate that acetazolamide has utility as an adjuvant in the treatment of certain convulsions disorders (e.g., petit mal, unlocalized seizures; chronic simple (open-angle) glaucoma, secondary glaucoma, and preoperatively in acute angle-closure glaucoma). When acetazolamide is co-administered with other agents that can increase aqueous humor production (e.g., β-blockers, angiotensin-converting enzyme inhibitors), the diuretic effect of acetazolamide may be diminished or may be lost.

INCREASED ACCESS TO DIURESIS

Acetazolamide is an enzyme inhibitor that specifically on carbonic anhydrase, the enzyme that catalyzes the reverse reaction involving the hydration of carbon dioxide and the dehydration of carbonic acid. In the eye, this inhibitory action of acetazolamide decreases the aqueous humor pressure and results in a drop in intraocular pressure, a reaction that can be sustained in glaucoma of diverse etiology (e.g., open-angle, angle-closure, and secondary glaucoma; glaucoma associated with uveitis; pseudoexfoliation glaucoma). This reduction in intraocular pressure is thought to result from a decrease in the formation of aqueous humor, which is the fluid that nourishes the structures of the eye.

Acetazolamide is the diuretic effect of acetazolamide is due to its action in the kidney on the reversible reaction in its ability to inhibit carbonic anhydrase, which seems to indicate that acetazolamide has utility as an adjuvant in the treatment of certain convulsions disorders (e.g., petit mal, unlocalized seizures; chronic simple (open-angle) glaucoma, secondary glaucoma, and preoperatively in acute angle-closure glaucoma). When acetazolamide is co-administered with other agents that can increase aqueous humor production (e.g., β-blockers, angiotensin-converting enzyme inhibitors), the diuretic effect of acetazolamide may be diminished or may be lost.

INCREASED ACCESS TO DIURESIS

Acetazolamide is an enzyme inhibitor that specifically on carbonic anhydrase, the enzyme that catalyzes the reverse reaction involving the hydration of carbon dioxide and the dehydration of carbonic acid. In the eye, this inhibitory action of acetazolamide decreases the aqueous humor pressure and results in a drop in intraocular pressure, a reaction that can be sustained in glaucoma of diverse etiology (e.g., open-angle, angle-closure, and secondary glaucoma; glaucoma associated with uveitis; pseudoexfoliation glaucoma). This reduction in intraocular pressure is thought to result from a decrease in the formation of aqueous humor, which is the fluid that nourishes the structures of the eye.

Acetazolamide is the diuretic effect of acetazolamide is due to its action in the kidney on the reversible reaction in its ability to inhibit carbonic anhydrase, which seems to indicate that acetazolamide has utility as an adjuvant in the treatment of certain convulsions disorders (e.g., petit mal, unlocalized seizures; chronic simple (open-angle) glaucoma, secondary glaucoma, and preoperatively in acute angle-closure glaucoma). When acetazolamide is co-administered with other agents that can increase aqueous humor production (e.g., β-blockers, angiotensin-converting enzyme inhibitors), the diuretic effect of acetazolamide may be diminished or may be lost.

INCREASED ACCESS TO DIURESIS

Acetazolamide is an enzyme inhibitor that specifically on carbonic anhydrase, the enzyme that catalyzes the reverse reaction involving the hydration of carbon dioxide and the dehydration of carbonic acid. In the eye, this inhibitory action of acetazolamide decreases the aqueous humor pressure and results in a drop in intraocular pressure, a reaction that can be sustained in glaucoma of diverse etiology (e.g., open-angle, angle-closure, and secondary glaucoma; glaucoma associated with uveitis; pseudoexfoliation glaucoma). This reduction in intraocular pressure is thought to result from a decrease in the formation of aqueous humor, which is the fluid that nourishes the structures of the eye.

Acetazolamide is the diuretic effect of acetazolamide is due to its action in the kidney on the reversible reaction in its ability to inhibit carbonic anhydrase, which seems to indicate that acetazolamide has utility as an adjuvant in the treatment of certain convulsions disorders (e.g., petit mal, unlocalized seizures; chronic simple (open-angle) glaucoma, secondary glaucoma, and preoperatively in acute angle-closure glaucoma). When acetazolamide is co-administered with other agents that can increase aqueous humor production (e.g., β-blockers, angiotensin-converting enzyme inhibitors), the diuretic effect of acetazolamide may be diminished or may be lost.

INCREASED ACCESS TO DIURESIS

Acetazolamide is an enzyme inhibitor that specifically on carbonic anhydrase, the enzyme that catalyzes the reverse reaction involving the hydration of carbon dioxide and the dehydration of carbonic acid. In the eye, this inhibitory action of acetazolamide decreases the aqueous humor pressure and results in a drop in intraocular pressure, a reaction that can be sustained in glaucoma of diverse etiology (e.g., open-angle, angle-closure, and secondary glaucoma; glaucoma associated with uveitis; pseudoexfoliation glaucoma). This reduction in intraocular pressure is thought to result from a decrease in the formation of aqueous humor, which is the fluid that nourishes the structures of the eye.

Acetazolamide is the diuretic effect of acetazolamide is due to its action in the kidney on the reversible reaction in its ability to inhibit carbonic anhydrase, which seems to indicate that acetazolamide has utility as an adjuvant in the treatment of certain convulsions disorders (e.g., petit mal, unlocalized seizures; chronic simple (open-angle) glaucoma, secondary glaucoma, and preoperatively in acute angle-closure glaucoma). When acetazolamide is co-administered with other agents that can increase aqueous humor production (e.g., β-blockers, angiotensin-converting enzyme inhibitors), the diuretic effect of acetazolamide may be diminished or may be lost.

INCREASED ACCESS TO DIURESIS

Acetazolamide is an enzyme inhibitor that specifically on carbonic anhydrase, the enzyme that catalyzes the reverse reaction involving the hydration of carbon dioxide and the dehydration of carbonic acid. In the eye, this inhibitory action of acetazolamide decreases the aqueous humor pressure and results in a drop in intraocular pressure, a reaction that can be sustained in glaucoma of diverse etiology (e.g., open-angle, angle-closure, and secondary glaucoma; glaucoma associated with uveitis; pseudoexfoliation glaucoma). This reduction in intraocular pressure is thought to result from a decrease in the formation of aqueous humor, which is the fluid that nourishes the structures of the eye.

Acetazolamide is the diuretic effect of acetazolamide is due to its action in the kidney on the reversible reaction in its ability to inhibit carbonic anhydrase, which seems to indicate that acetazolamide has utility as an adjuvant in the treatment of certain convulsions disorders (e.g., petit mal, unlocalized seizures; chronic simple (open-angle) glaucoma, secondary glaucoma, and preoperatively in acute angle-closure glaucoma). When acetazolamide is co-administered with other agents that can increase aqueous humor production (e.g., β-blockers, angiotensin-converting enzyme inhibitors), the diuretic effect of acetazolamide may be diminished or may be lost.

INCREASED ACCESS TO DIURESIS

Acetazolamide is an enzyme inhibitor that specifically on carbonic anhydrase, the enzyme that catalyzes the reverse reaction involving the hydration of carbon dioxide and the dehydration of carbonic acid. In the eye, this inhibitory action of acetazolamide decreases the aqueous humor pressure and results in a drop in intraocular pressure, a reaction that can be sustained in glaucoma of diverse etiology (e.g., open-angle, angle-closure, and secondary glaucoma; glaucoma associated with uveitis; pseudoexfoliation glaucoma). This reduction in intraocular pressure is thought to result from a decrease in the formation of aqueous humor, which is the fluid that nourishes the structures of the eye.

Acetazolamide is the diuretic effect of acetazolamide is due to its action in the kidney on the reversible reaction in its ability to inhibit carbonic anhydrase, which seems to indicate that acetazolamide has utility as an adjuvant in the treatment of certain convulsions disorders (e.g., petit mal, unlocalized seizures; chronic simple (open-angle) glaucoma, secondary glaucoma, and preoperatively in acute angle-closure glaucoma). When acetazolamide is co-administered with other agents that can increase aqueous humor production (e.g., β-blockers, angiotensin-converting enzyme inhibitors), the diuretic effect of acetazolamide may be diminished or may be lost.

INCREASED ACCESS TO DIURESIS

Acetazolamide is an enzyme inhibitor that specifically on carbonic anhydrase, the enzyme that catalyzes the reverse reaction involving the hydration of carbon dioxide and the dehydration of carbonic acid. In the eye, this inhibitory action of acetazolamide decreases the aqueous humor pressure and results in a drop in intraocular pressure, a reaction that can be sustained in glaucoma of diverse etiology (e.g., open-angle, angle-closure, and secondary glaucoma; glaucoma associated with uveitis; pseudoexfoliation glaucoma). This reduction in intraocular pressure is thought to result from a decrease in the formation of aqueous humor, which is the fluid that nourishes the structures of the eye.

Acetazolamide is the diuretic effect of acetazolamide is due to its action in the kidney on the reversible reaction in its ability to inhibit carbonic anhydrase, which seems to indicate that acetazolamide has utility as an adjuvant in the treatment of certain convulsions disorders (e.g., petit mal, unlocalized seizures; chronic simple (open-angle) glaucoma, secondary glaucoma, and preoperatively in acute angle-closure glaucoma). When acetazolamide is co-administered with other agents that can increase aqueous humor production (e.g., β-blockers, angiotensin-converting enzyme inhibitors), the diuretic effect of acetazolamide may be diminished or may be lost.